压铸工艺是将压铸机、压铸模和合金三大要素有机地组合而加以综合运用的过程。而压铸时金属按填充型腔的过程,是将压力、速度、温度以及时间等工艺因素得到统一的过程。同时,这些工艺因素又相互影响,相互制约,并且相辅相成。只有正确选择和调整这些因素,使之协调一致,才能获得预期的结果。因此,在压铸过程中不仅要重视铸件结构的工艺性,压铸模的先进性,压铸机性能和结构优良性,压铸合金选用的适应性和熔炼工艺的规范性;更应重视压力、温度和时间等工艺参数对铸件质量的重要作用。在压铸过程中应重视对这些参数进行有效的控制。
(一)压力
压力的存在是压铸工艺区别其他铸造方法的主要特点。
1. 压射力
压射力是压铸机压射机构中推动压射活塞运动的力。它是反映压铸机功能的一个主要参数。
压射力的大小,由压射缸的截面积和工作液的压力所决定。压射力的计算公式如下:
P压射力=P压射油缸×π×D2/4
式中:P压射力-压射力(N-牛)
P压射油缸-压射油缸内工作液的压力(Pa-帕)
D-压射缸的直径(m-米)
π=3.1416
2. 比压
压室内熔融金属在单位面积上所受的压力称为比压。比压也是压射力与压室截面积的比值关系换算的结果。其计算公式如下:
P比压=P压射力/F压室截面积
式中:P比压-比压(Pa-帕)
P压射力-压射力(N-牛)
F压室截面积-压室截面积(m2-米2)
即F压室截面积=πD2/4 式中D(m-米)为压室直径
π=3.1416
3. 压力的作用
(1)比压对铸件机械性能的影响
比压增大,结晶细,细晶层增厚,由于填充特性改善,表面质量提高,气孔影响减轻,从而抗拉强度提高,但延伸率有所降低。
(2)对填充条件的影响
合金熔液在高比压作用下填充型腔,合金温度升高,流动性改善,有利于铸件质量的提高。
4. 比压的选择
(1)根据铸件的强度要求考虑
将铸件分为有强度要求的和一般要求的两类,对于有强度要求的,应该具有良好的致密度。这是应该采用高的增压比压。
(2)根据铸件壁厚考虑
在一般情况下,压铸薄壁铸件时,型腔中的流动阻力较大,内浇口也采用较薄的厚度,因此具有大的阻力,故要有较大的填充比压,才能保证达到需要的内浇口速度。
对于厚壁铸件,一方面选定的内浇口速度较低,并且金属的凝固时间较长,可以采用较小的填充比压;另一方面,为了使铸件具有一定的致密度,还需要有足够的增压比压才能满足要求。对于形状复杂的铸件,填充比压应选用高一些。此外,如合金的类别,内浇口速度的大小,压铸机合模能力的功率及模具的强度等,都应作适当考虑。填充比压的大小,主要根据选定的内浇口速度计算得到。至于增压比压的大小,根据合金类别,可参考下表数值选用。当型腔中排气条件良好,内浇口厚度与铸件壁厚的比值适当的情况下,可选用低的增压比压。而排气条件愈差,内浇口厚度与铸件壁厚比值愈小时,则增压比压应愈高。
推荐选用增压比压范围表
零件类型 铝合金 锌合金 黄铜
承受轻负荷的零件30~40MPa 13~20MPa 30~40MPa
承受较大负荷的零件40~80MPa 20~30MPa 40~60MPa
气密性面大壁薄零件80~120MPa 25~40MPa 80~100MPa
锌合金以热室压铸机为主
5. 胀型力和锁模力
压铸过程中,填充结束并转为增压阶段时,作用于正在凝固的金属上的比压(增压比压),通过金属(铸件浇注系统、排溢系统)传递型腔壁面,此压力称为胀型力(又称反压力)。
当胀型力作用在分型面上时,便为分型面胀型力,而作用在型腔各个侧壁方向时,则称为侧面胀型力。
胀型力可用下式表示:
P胀型力=P比压×A投影面积
式中:P胀型力-胀型力(N-牛)
P比压-增压比压(Pa-帕)
A投影面积-承受胀型力的投影面积(m2-米2)
通常情况下必须使锁模力大于计算得到的胀型力。否则,在金属液压射时,模具分型面会胀开,从而产生金属飞溅,并使型腔中的压力无法建立,造成铸件尺寸公差难以保证,甚至难以成型。锁模力(即合模力)是选用压铸机时首先要确定的重要参数。
一般应满足下面公式的要求:
P锁模力≥ K×P胀型力
式中:P锁模力-压铸机的锁模力(N-牛)
K-安全系数(一般取K=1.3)
P胀型力-胀型力(N-牛)