压铸件的缺陷及产生的原因

 
楼主  收藏   举报   帖子创建时间:  2010-04-19 14:15 回复:0 关注量:302
 

压铸件的缺陷及产生的原因

压铸生产中遇到的质量问题很多,其原因也是多方面。生产中必须对产生的质量问题作出正确的判断。找出真正的原因,才能提出相应切实可行的有效的改进措施,以便不断提高铸件质量。

压铸件生产所出现的质量问题中,有关缺陷方面的特征、产生的原因(包括改进措施)分别叙述于后。

一、欠铸

压铸件成形过程中,某些部位填充不完整,称为欠铸。当欠铸的部位严重时,可以作为铸件的形状不符合图纸要求来看待。通常对于欠铸是不允许存在的。

造成欠铸的原因有:

1)填充条件不良,欠铸部位呈不规则的冷凝金属

Ø   当压力不足、不够、流动前沿的金属凝固过早,造成转角、深凹、薄壁(甚至薄于平均壁厚)、柱形孔壁等部位产生欠铸。

Ø   模具温度过低

Ø   合金浇入温度过低

Ø   内浇口位置不好,形成大的流动阻力

2)气体阻碍,欠铸部位表面光滑,但形状不规则

Ø   难以开设排溢系统的部位,气体积聚

Ø   熔融金属的流动时,湍流剧烈,包卷气体

3)模具型腔有残留物

Ø   涂料的用量或喷涂方法不当,造成局部的涂料沉积

Ø   成型零件的镶拼缝隙过大,或滑动配合间隙过大,填充时窜入金属,铸件脱出后,并未能被完全带出而呈现片状夹在缝隙上。当之种片状的金属(金属片,其厚度即为缝隙的大小)又凸于周围型面较多,便在合模的情况下将凸出的高度变成适为铸件的壁厚,使以后的铸件在该处产生穿透(对壁厚来说)的沟槽。这种穿透的沟槽即成为欠铸的一种特殊形式。这种欠铸现象多在由镶拼组成的深腔的情况下出现。

Ø   浇料不足(包括余料节过薄)。

Ø   立式压铸机上,压射时,下冲头下移让开喷嘴孔口不够,造成一系列的填充条件不良。

二、裂纹

铸件的基体被破坏或断开,形成细长的缝隙,呈现不规则线形,在外力作用下有发展的趋势,这种缺陷称为裂纹。在压铸件上,裂纹是不允许存在的。

造成裂纹的原因有:

1. 铸件结构和形状

Ø   铸件上的厚壁与薄壁的相接处转变避剧烈

Ø   铸件上的转折圆角不够

Ø   铸件上能安置推杆的部位不够,造成推杆分布不均衡

Ø   铸件设计上考虑不周,收缩时产生应力而撕裂。

2. 模具的成型零件的表面质量不好,装固不稳

Ø   成型表面沿出模方向有凹陷,铸件脱出撕裂

Ø   凸的成型表面其根部有加工痕迹未能消除,铸件被

Ø   成型零件装固有偏斜,阻碍铸件脱出。

3. 顶出造成

Ø   模具的顶出元件安置不合理(位置或个数)

Ø   顶出机构有偏斜,铸件受力不均衡

Ø   模具的顶出机构与机器上的液压顶出器的连接不合理,或有歪斜或动作不协调

Ø   顶针顶出时的机器顶杆长短不一致,液压顶出的顶棒长短不一致。

4. 合金的成分

1)对于锌合金

A有害杂质铅、锡和镉的含量较多

B纯度不够

2)对于铝合金

A含铁量过高,针状的含铁化合物增多

B铝硅合金中硅含量过高

C铝镁合金中镁含量高

D其它杂质过高,增加了脆性

3)对于镁合金

铝、硅含量过高

5)合金的熔炼质量

A熔炼温度过高,造成偏析

B保温时间过长,晶粒粗大

C氧化夹杂过多

6)操作不合理

A留模时间过长,特别是热脆性大的合金(如镁合金)

B涂料用量不当,有沉积

7)填充不良、金属基体未熔合,凝固后强度不够,特别是离浇口远的部位更易出现。

三、孔穴

孔穴包括气孔和缩孔

    1、气孔

气孔有两种:一种是填充时,金属卷入气体形成的内表面光亮和光滑、形状较为规则的孔洞。另一种是合金熔炼不正确或不够,气体熔解于合金中。压铸时,激冷甚剧,凝固很快,熔于金属内部的气体来不及析出,使金属内的气体留在铸件内而形成孔洞。

压铸件内的气孔以金属卷入型腔中的气体所形成的气孔是主要的,而气体的大部分为空气。

产生气孔的原因

1. 内浇口速度过高,湍流运动过剧,金属流卷入气体严重

2. 内浇口截面积过小,喷射严重

3. 内浇口位置不合理,通过内浇口后的金属立即撞击型壁、产生涡流,气体被卷入金属流中

4. 排气道位置不对,截面积不够,造成排气条件不良

5. 大机器压铸小零件,压室的充满度过小,尤其是卧式冷压铸机上更为明显

6. 铸件设计不合理。a形成铸件有难以排气的部位; b局部部位的壁厚太厚

7. 待加工面的加工量过大,使壁厚增加过多。

8. 熔融金属中含有过多的气体

2、缩孔

铸件凝固过程中,金属补偿不足所形成的呈现暗色、形状不规则的孔洞,即为缩孔。其原因有:

I.   金属浇入温度过高

II.  金属液过热时间太长

III.  压射的最终补压的压力不足

IV.  余料饼太薄,最终补压起不到作用

V.   内浇口截面积过小(主要是厚度不够)

VI.  溢流槽位置不对或容量不够

VII.  铸件结构不合理, 有热节部位,并且该处有解决

VIII.   铸件的壁厚变化太大

在压铸件上,产生缩孔的部位,往往是容易产生气孔的处所 ,故压铸件内,有的孔穴常常是气孔、缩孔混合而成的。

四、条纹

填充过程中,当熔融金属流动的动能足以产生喷溅或虽然聚集成流束,但又相连得不紧密的条件时,边界——凝固层便具有“疏散效应”,而处于这种状态金属在随后的金属主流所覆盖之前,早就凝固,于是,在铸件表面上便形成纹络,这就是压铸件上常见的条纹。铝合金铸件上条纹最为明显,而在铸件的大面积的壁面上,就更为突出。

这种条纹呈现不同的反射程度,有时比铸件的基体的颜色稍暗一些,有时硬度上也稍有不一样。根据工厂初步测定条纹的深度约在0.2毫米以内,而深度为0.05毫米起,外观就已经明显地看出来。

对条纹作化学的、摄谱的和金相的研究发现,条纹与铸件本身相同的化学成分,可而条纹不是硅偏析、渣滓、污损,也不是合金的其它化学本性原因造成的。条纹的深度仅0.08~0.20毫米。有时条纹有着清晰的边界,有时条纹与铸造组织混杂在一起,看不到明显的过渡区。条纹的微观组织基本上没有不同于主要组织,只是它更细致一些。对于铝合金来说,条纹内铝—硅共晶组织更加细致,合金组元中的金属间化合物也是如此。条纹也呈现硅的不足(暗的组成物),但没有发现化学上的差异。在条纹更细的组织中,硅的分布也不一样,既然硅比铝要黑些,因而条纹的颜色常常看来更暗。

综上所述,压铸件表面的条纹,是填充过程中必然发生的结果,尤其是铝合金铸件的表面更为突出,而条纹的组织和性质对于压铸件的使用来说,在一般的情况下没有影响的。只有在壁很薄时,才对条纹的深度有限制。至于在光饰要求高的表面上则还是不应该存在的。

既然条纹是由于边界——凝固层的“疏散效应”所形成,而根据填充过程的特性,便可对产生这种“疏散效应”的原因作如下的分析:

I.  填充时,剧烈的湍流将气体卷入金属流中,从而对金属流速产生弥散作用。

II.  在填充过程中,铸件的外壳层(边界——凝固层)常常不是整个地同时形成的(在填充理论的叙述中已经提到)在尚未形成壳层的区域便出现“疏散效应”。对于有大平在面的铸件,在大的平面壁上就更为明显。

III.  模具温度低于热平衡条件所应有的温度,使“疏散效应”更为强烈,产生的区域亦大为增多。

IV.  金属流撞击型壁而产生溅射所造成的“疏散效应”十分明显,当撞击后的金属分散成密集的液滴,便成为麻面。这就是铸件表面上总是带有强烈的溅射痕迹的原因。正对内浇中的型壁是撞击溅射最常见的区域。

V.  涂料涂层不匀,厚的部位受到金属流的炽热混杂在金属中,并使金属产生“分隔”,从而造成“疏散效应”。

VI.  涂料局部沉积而气体又未挥发干净,余下的气体被金属流所包卷,对金属流产生弥散作用。

VII.  排溢系统不合理,逸气不通畅,型腔中的气体过多,金属流因气体而弥散的作用增强。

根据条纹产生的原因,可见其深度是随时变化的。所以,生产中,常常按深度的不同,将条纹分别称为花纹、流痕、麻面和冷纹等等。而冷纹的深度则是条纹中最深的一种。

五、表层疏松

    压铸件的外壳层(边界——凝固层)一般约为0.5~0.8毫米左右。在这个壳层(也称表皮层)上有一种呈现松散不密实的宏观组织,即为表层疏松。