研究了基于可见-近红外光谱技术的发动机润滑油含水量快速检测方法。在获取光谱信息的基础上,提出了采用不同的光谱建模方法以提高检测精度和简化分析计算。分别采用主成分分析(PCA)和连续投影算法(SPA)方法进行模型输入变量的提取。SPA最终选择了476,483,544,925,933,938,952,970和974nm共9个波长为最优变量。基于SPA选择的变量,分别应用偏最小二乘回归(PLSR)和多元线性回归(MLR)建模。效果均优于全波段PLSR模型和PCA-PLSR模型。说明SPA选择的有效变量能够包含最重要的全波段光谱信息,同时可以去除无用的信息变量。为了进一步提高检测效果,采用LS-SVM分别基于SPA选择后的有效变量和全波段光谱进行建模。两个模型的预测确定系数(RP2)均在0.9以上。SPA-LS-SVM的效果要优于全波段LS-SVM模型的效果。SPA-LS-SVM模型的RP2达到了0.983,剩余预测偏差(RPD)值为6.963。表明可见-近红外光谱可以用于发动机润滑油含水量的检测。